Skip to main content

Table 3 Predictive performance of direct and indirect mapping models for the EQ‑5D‑3L (N = 238)

From: Developing mapping algorithms to predict EQ-5D health utility values from Bath Ankylosing Spondylitis Disease Activity Index and Bath Ankylosing Spondylitis Functional Index among patients with Ankylosing Spondylitis

Model type

Mean

SD

Min

Max

MAE

RMSE

Spearman

CCC

Average rank

EQ-5D-3L value

0.8811

0.1207

0.1702

1.0000

     

Full sample

         

 OLS

0.8811

0.0466

0.7590

0.9444

     

 CLAD

0.8788

0.0737

0.6788

1.0002

     

 Tobit

0.9100

0.0680

0.7317

1.0107

     

 ALDVMM

0.8799

0.0468

0.7463

0.9427

     

 BM

0.8944

0.0469

0.7254

0.9491

     

 Ologit

0.8791

0.0896

0.5966

0.9868

     

 Mlogit

0.8795

0.0881

0.6573

0.9882

     

Cross validation

         

 OLS

0.8810

0.0473

0.7383

0.9499

0.0869

0.1130

0.4059

0.2410

5

 CLAD

0.9100

0.0687

0.7077

1.0266

0.0850

0.1197

0.4057

0.2890

5

 Tobit

0.8958

0.0745

0.6847

1.0207

0.0856

0.1174

0.4158

0.3230

3

 ALDVMM

0.8788

0.0501

0.7224

0.9483

0.0896

0.1168

0.4114

0.2360

7

 BM

0.8677

0.0553

0.7175

0.9569

0.0858

0.1132

0.4195

0.2810

3

 Ologit

0.8786

0.0901

0.5758

0.9885

0.0848

0.1202

0.4365

0.3640

2

 Mlogit

0.8786

0.0893

0.6124

0.9905

0.0836

0.1199

0.4395

0.3630

1

  1. CLAD censored least absolute deviations, ALDVMM adjusted limited dependent variable mixture model, BM beta-mixture model, Ologit ordered logit, Mlogit multinomial logit. Bold indicates the best model in this performance indicator