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Abstract 

Objectives To estimate values on a quality-adjusted life year (QALY) scale using individual preference evidence, 
choice analyses typically include ancillary parameters, such as scale factors and discount rates. These parameters 
potentially differ among respondents. In this study, we investigated how allowing heterogeneity in scale and rate 
affects the estimation of EQ-5D-5L values.

Methods Using the first wave of the 2016 EQ-5D-5L valuation study (N = 1017), we estimated a conditional logit 
(CL) model and three mixed logit models: random scale, random rate, and bivariate. Prior to the exploratory study, 
we hypothesized that scale and rate are correlated and that allowing heterogeneity in both parameters decreases 
the number of insignificant incremental effects. We confirmed the exploratory findings by re-estimating these models 
using paired comparison responses from a second wave (N = 1229).

Results Scale and rate exhibited significant heterogeneity and were positively correlated. As hypothesized, allow-
ing this heterogeneity improved the face validity of the EQ-5D-5L value set by reducing the number of insignificant 
incremental effects (from 6 to 2 p-values > 0.05; out of 20). Nevertheless, the CL and bivariate mixed logit estimates are 
highly correlated and concordant (Pearson correlation coefficient of 0.897, Spearman correlation coefficient of 0.888, 
Lin’s concordance coefficient of 0.763).

Conclusions Allowing this heterogeneity adds three parameters to the estimation (two variances and a correlation) 
and improves the face validity of the EQ-5D-5L values. This finding may influence experimental design and choice 
analysis in health valuation more generally.

Highlights 

1. Allowing heterogeneity in scale and rate improves the estimation of EQ-5D-5L values in terms of face validity, 
namely, reducing the number of insignificant incremental effects.

2. From the high positive correlation between scale and rate, we can infer that people who heavily discount future 
outcomes are more sensitive to smaller differences in their net present value on a quality-adjusted life-year (QALY) 
scale.

3. Controlling for scale and rate heterogeneity slightly reduced the size of the incremental effects, raising the lower 
bound of the EQ-5D-5L values from -0.545 to -0.191.
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Introduction
In health valuation, the purpose is to estimate prefer-
ence weights for health outcomes that represent societal 
values on a quality-adjusted life-year (QALY) scale. On 
a QALY scale, “immediate death” has a value of 0, and 
“Starting today 1 year with no health problem then die” 
has a value of 1. Apart from these two anchors, choice 
analyses often include ancillary parameters, such as scale 
factors and discount rates. The primary aim of this paper 
is to investigate how allowing heterogeneity in scale and 
rate affects the estimation of EQ-5D-5L values.

In a logistic regression, the scale parameter defines the 
proportional relationship between the value of the initial 
QALY and a change in the log-odds of choice. A smaller 
(larger) scale parameter implies that a larger (smaller) dif-
ference in value is necessary to achieve the same change 
in log-odds of choice. In other words, the scale parameter 
is an inverse measure of the size of the random compo-
nent. Varying the scale parameter between individuals 
implies that some respondents have different sensitivi-
ties to the value of the initial QALY [1]. The sources of 
this scale heterogeneity may be related to their behavior 
(e.g., attention span) or preferences (e.g., connoisseur) 
[2]. In health preference research more generally, scaling 
parameters are estimated in analyses of willingness-to-
pay (i.e., monetary scaling) and maximum acceptable risk 
(MAR).

Apart from the scale parameter, the value of a health 
outcome depends on temporal discounting. Starting in 
the 1970s, researchers characterized the value of quality-
adjusted life span by simply multiplying quality of life by 
length of life (i.e., no discounting). However, in the late 
2010s, it was shown that discounting may be incorpo-
rated into health valuations [3–5]. Discounting is widely 
accepted in economics and finance; however, some out-
come researchers express health-state utilities anchored 
on “dead” and “full health” and do not account for tem-
poral discounting. In economic evaluations more gener-
ally, the marginal utility of time is decreasing (i.e., each 
additional day is worth less than the prior day), so incor-
porating discounting into health valuation enhanced 
its coherence with microeconomic theory [6, 7]. More 
recently, Karim and colleagues showed how the discount 
rate may vary within and between latent classes [8]. 
The sources of rate heterogeneity may be related to the 
respondents’ perceptions of death (e.g., nontraders) or 
their marginal decrease in utility of life years.

Prior to the exploratory analysis, we hypothesized that 
by allowing individual-level randomness in these two 
ancillary parameters, the estimates of the EQ-5D-5L 
value set might improve in terms of face validity. The 
EQ-5D-5L descriptive system has five ordinal domains, 
each representing increasing severity of health problems. 

Therefore, we assessed face validity by counting the num-
ber of insignificant incremental effects under alternative 
logit specifications estimated using a first survey wave. 
To complement this aim, we explored the variances and 
correlations of these parameters and their implications 
beyond health valuation.

As recommended by Craig, de Bekker-Grob, González 
Sepúlveda, and Greene, we confirmed the initial findings 
using a second wave [9]. The exploratory results led us 
to further hypothesize that scale and rate are positively 
correlated at the individual level. For example, the net 
present value (NPV) of the 10 QALYs depends on the dis-
count rate, but the effect of NPV on the log-odds ratio 
depends on the scale parameter. Persons who discount 
heavily (lightly) may seem to be more (less) sensitive to 
differences in NPV, leading to a positive correlation. 
Analogously, a person who dislikes spicy foods may seem 
more sensitive to spice. Although this may now seem 
intuitive, to the best of our knowledge, no study has pro-
duced empirical evidence of this correlation.

The remainder of this paper is organized as follows. 
Section 2 describes the methods we used in this project, 
including the theoretical foundation, model specifica-
tions, exploratory (i.e., wave 1) and confirmatory (i.e., 
wave 2) data, and estimation techniques. In Sects.  3, 4 
and 5, we provide the results, discussion and conclusions, 
respectively.

Methods
Random utility theory for paired comparisons
The theoretical framework of this choice analysis is based 
on random utility maximization (RUM) theory. Accord-
ing to RUM theory, the utility function Uitj = Vitj + εitj 
of individual i = 1, . . .N  for alternative j = 1, . . . , J  in 
choice situation t = 1, . . .T  can be decomposed into a 
deterministic part of utility Vitj (representative utility) 
and a random part of utility εitj . In paired comparison 
modeling [10], individual i will choose an alternative j if 
and only if the probability that the utility associated with 
alternative j is higher than the utility of its alternative.

Choice probabilities are calculated based on a relative 
measure where the utility of one of the alternatives in the 
choice set is taken as a reference. To derive the choice 
probabilities, we need to make distributional assump-
tions about the random part of utility. The conditional 
logit (CL) model is derived under the assumption that 
εitj is independently and identically distributed (IID) with 
an extreme value type I (EV1) distribution [11–13]. As a 

(1)
Pitj = P Uitj > Uitk , ∀ k �= j

Pitj = P Vitj + εitj > Vitk + εitk , ∀ k �= j

Pitj = P εitk − εitj < Vitj − Vitk , ∀ k �= j
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result, the difference between two IID EV1 random error 
terms (εitk − εitj) has a logistic distribution with scale 
parameter � . This implies that the choice probabilities of 
the CL model can be expressed in terms of a logistic dis-
tribution with a cumulative distribution function

where � is the scale parameter [14].

Scale and rate heterogeneity in health valuation
For this study, we extended the CL model (Eq.  2) for 
health valuation on a quality-adjusted life-year (QALY). 
By construction, the scale parameter is always positive, 
� = exp(µ) , and represents the relationship between log-
odds and the value of a health outcome Vitj on a QALY 
scale. We specify the value of a health outcome Vitj as 
a product of two values representing heath VH

itj  and life 
years VY

itj:

In this paper, we assume that the value of health 
VH
itj = 1− β ′xitj , where xitj is a vector of 20 incremental 

indicators of health problems in mobility, self-care, usual 
activities, pain/discomfort and anxiety/depression (i.e., 
MO, SC, UA, PD, AD), and β is a vector of preference 
weights on a QALY scale. Its homogeneity is a simplifying 
assumption for the estimation of a single EQ-5D-5L5L 
value set that may be relaxed in future work.

More specifically, the value of the health profiles is 
parameterized using 20 incremental effects (i.e., 5 attrib-
utes with 4 levels each), where each effect is caused by 
a dummy variable representing an incremental change in 
the level of severity of an EQ-5D-5L attribute. Therefore, 
we can write

As a criterion of face validity, all 20 incremental effects 
in vector β should be positive since they represent losses 
in value due to increases in the level of severity of a health 
condition from the full health profile [14].

For the value of life years VY
itj , the identity function is 

commonly assumed to be VY
itj = Yitj , where Yitj represents 

life years (i.e., no discounting). However, this functional 
form does not accurately represent the time prefer-
ences of the general population [4, 5]. Individuals usually 

(2)Pitj =
1

1+
∑J

k=1 exp[�(Vitk − Vitj)]
, ∀ k �= j

(3)Vitj = VH
itj × VY

itj

(4)VH
itj = 1−




β1MO12 + β2MO23 + β3MO34 + β4MO45+

β5SC12 + β6SC23 + β7SC34 + β8SC45+

β9UA12 + β10UA23 + β11UA34 + β12UA45+

β13PD12 + β14PD23 + β15PD34 + β16PD45+

β17AD12 + β18AD23 + β19AD34 + β20AD45




discount over time; i.e., future outcomes affect choices 
less than present outcomes. To allow for temporal dis-
counting, we adapt the power function (see 4)

where αi is the individual-specific power. On a QALY 
scale, the value of time VY

itj equals 1 when Yitj equals 1, 
regardless of the power αi , and the identity function (i.e., 
no discounting) implies that the power is unity, αi = 1.

Apart from restricting the individual-specific scale 
parameter to be positive, �i = exp(µi) , we restricted 
the power αi to the unit interval, 0 ≤ αi ≤ 1 . More spe-
cifically, we transform the power into a discount rate 
using the complementary log–log (CLL) function, 
αi = exp(−exp(ri)) which is naturally bounded to the 
unit interval. At first glance, ri has an inverse relationship 
with αi , and a lower αi implies greater discounting of life 
years; therefore, a higher rate ri implies greater discount-
ing. Future analyses may allow for negative discounting 
or alternative functional forms [15–17].

The bivariate distribution of the scale and rate 
among respondents
Due to limited panel evidence per respondent, it is not 
feasible to estimate individual-specific scales and rates as 
fixed effects (i.e., µi and ri ). Instead, we estimated a con-
ditional logit (CL) model and three mixed logit models. 
First, we estimated the CL model under homogeneity 
(µi = µ; ri = r) . Under this specification, all respondents 
have the same scale parameter and discount rate. In the 
second and third specifications, we estimated the mixed 
logit models with random scale and random rate, respec-
tively. We refer to these two mixed logit specifications as 
“univariate” models because each contains only one nor-
mally distributed random parameter.

Finally, in the fourth specification, we estimated a 
bivariate mixed logit model, including the mean and 
standard deviation of µi (i.e., µ and σµ , respectively) 
and ri (i.e., r and σr , respectively), as well as their cor-
relation. The ancillary parameters vary under a bivari-
ate normal distribution and may be correlated. We 
assume that µi and ri are normally distributed such that 
(µi, ri) ∼ N (σ 2

µ, ρ, σ
2
r ) where σ 2

µ = Var(µi) , σ 2
r = Var(ri) 

and ρ = Corr(µi, ri).
To shed more light on this potential bias, we express 

the individual-specific ancillary component, �iV Y
itj (apart 

from the value of health), as an exponential regression 
with two ancillary parameters (an intercept µi and a coef-
ficient αi) , where Yitj > 0 :

VY
itj = Y

αi
itj

�iV
Y
itj = exp(µi)Y

αi
itj = exp

(
µi + αiln

(
Yitj

))
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In this study, life years Yitj range from 1 to 10  years; 
therefore, ln

(
Yitj

)
 ranges from zero to 2.303. Given that 

ln
(
Yitj

)
 is always positive, the ancillary component can 

increase through either ancillary parameter ( µi or αi ). In 
econometric terms, ln

(
Yitj

)
 is an instrumental variable 

needed to identify the two ancillary parameters.

Data
In 2016, 8,222 U.S. respondents (4074 in wave 1 and 4148 
in wave 2) from all 50 states and Washington, D.C., com-
pleted an online survey that included 20 paired compari-
sons. The design of the paired comparisons was largely 
based on the EuroQol Valuation Technology (EQ-VT 
v1.0) protocols [18]. An example of the paired compari-
son conducted in the study is illustrated in Fig. 1. In this 
paper, we provide a general overview of the study. More 
details can be found in other studies [3, 19].

Each paired comparison is presented as a variation 
of health descriptions based on the EQ-5D-5L. The five 
dimensions (i.e., attributes) of the EQ-5D-5L are mobil-
ity, self-care, usual activities, pain/discomfort and anxi-
ety/depression, where each dimension is characterized 
by five levels ranging from no problems (i.e., level 1) to 
slight, moderate, severe, and unable/extreme problems 
(i.e., level 5). For instance, the health description on the 
right side of Fig. 1 can be represented as a vector of five 
numbers 33333 since all five dimensions are at a moder-
ate level. For each comparison, respondents were asked, 
“Which do you prefer?” regarding a pair of alternatives 
described using the EQ-5D-5L and lifespan attributes.

The online survey consisted of 3160 pairs, 1600 of 
which are efficient (or “quality only”) pairs and 1560 of 
which are quantity-quality pairs. In efficient pairs, both 
health descriptions consisted of varying levels of health 
problems with the same life years (e.g., 12345 vs 54321). 

In the quantity-quality pairs, one of the health descrip-
tions involves no health problems (i.e., 11111). Further-
more, 80 out of 1560 quantity-quality pairs included 
“immediate death”, which represents “dead” pairs, as 
one of the alternatives. The data were collected in two 
parts: an exploratory survey consisting of 1560 pairs and 
a confirmatory survey consisting of 1600 pairs. The sur-
vey data were collected at four temporal units (i.e., days, 
weeks, months, and years). This analysis included only 
the pairs with year units (1017 respondents in wave 1 and 
1229 in wave 2) because the other pairs did not describe 
events after 1 year (i.e., discounting).

With the diversity of pairs, it is mathematically feasi-
ble to identify the scale and rate separately using either 
wave of this dataset. Imagine a paired comparison with 
identical lifespans. These pairs may identify differential 
scales within a population, µi . Imagine a paired com-
parison with differential life years. These pairs may 
identify differential scales, µi and rates, ri . Apart from 
its pair types, this dataset is one of the largest national 
health valuation studies ever conducted [3], has both 
exploratory and confirmatory waves, and applied quota 
sampling at the pair level to assure that each pair had 
a minimum number of respondents along 18 demo-
graphic quotas.

Mixed logit and maximum simulated likelihood
To estimate the mixed logit models, the maximum like-
lihood (ML) estimator of parameter vector θ can be 
utilized when the density of dependent variable yi condi-
tional on a vector of independent variables xi , f (yi|xi, θ) , 
has a closed-form such that

θ̂N = argmax
θ

∑N

i=1
logf (yi|xi, θ)

Fig. 1 Example of a paired comparison
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where i = 1, . . . ,N  . However, ML is not feasible when 
f (yi|xi, θ) does not have a tractable closed-form. This 
can be because the density is specified only conditional 
on latent variables, which cannot be integrated out. Thus, 
the MSL estimator is a possible alternative [20, 21]. Sup-
pose  f̃ (yi, xi,ui, θ) is an unbiased simulator of the condi-
tional density f (yi|xi, θ) such that

where ui is an individual-specific latent vector ( µi and ri ) 
whose distribution is known and independent of (yi, xi) . 
Then, the MSL estimator of θ is defined as

where usi (s = 1, . . . , S) are drawn independently for each 
individual i from the distribution of ui . The MSL estima-
tor is obtained by replacing the intractable conditional 
p.d.f. f (yi|xi, θ) with its unbiased approximation based 
on the simulator f̃ (yi, xi,usi , θ) . In this study, we estimate 
the mean and variance of each random parameter as well 
as their p-values [3].

In our MSL estimations of the three specifications of 
the mixed logit model, we use 250 Halton draws (i.e., 
S = 250 ) [22]. We used the MATLAB programming lan-
guage for all estimations. More specifically, we began by 
estimating the CL comparator and three specifications 
using the wave 1 data, which helped us state our hypoth-
eses more clearly. Afterwards, we re-estimated the mod-
els and tested these hypotheses using the wave 2 data. 
Furthermore, we compare the results between waves and 
models to assess how allowing heterogeneity in scale and 
rate affects the estimation of EQ-5D-5L values.

Results
In this section, we present the results for CL and mixed 
logit estimation using waves 1 and 2 separately. In 
Table  1, we compare the CL estimates with the mixed 
logit estimates where we allow correlations between µi 
and ri . In Table 1A (Appendix), we present the univariate 
results for the mixed logit estimation with random scale 
and random rate separately.

Exploratory results
As shown in Table  1, the exploratory CL results pro-
duce three insignificant positive effects (p-value < 0.01; 
MO12 , UA45 and AD12 ) and one insignificant negative 
effect for PD12 . There are also two additional effects with 
p-values between 1 and 5% (i.e., SC12 and UA12 ). Further-
more, the CL results suggest that “immediate death” is 

f
(
yi|xi, θ

)
= Eu[f̃ (yi, xi,ui, θ)|yi, xi]

θ̂SN = argmax
θ

N∑

i=1

log

[
1

s

S∑

s=1

f̃ (yi, xi,u
s
i , θ)

]

better than experiencing the worst possible EQ-5D-5L 
description for 1  year (i.e., V (55555) = −0.588 ). Since 
the estimated µ is 0.401, the scale parameter in the CL 
model is � = exp(0.401) = 1.493 . Similarly, since the 
estimated r is −0.196 , the power α in the CL model is 
exp(−exp(−0.196)) = 0.439.

In Table  A1 (Appendix), we present the univari-
ate results where we allow for random scale and ran-
dom rate separately. The standard deviations of µi and 
ri are 1.232 and 1.325, respectively, suggesting that scale 
and rate heterogeneity exist. However, the random scale 
model has insignificant effect (5 with p-value > 0.05), 
i.e., one more than the CL model, while the random rate 
model has same number of insignificant effects (4 with 
p-value > 0.05). In the exploratory results, allowing for one 

Table 1 Results for conditional and bivariate mixed logit models

Notice that the scale parameter is equal to � = exp(µ) , and the power is equal 
to α = exp(−exp(r)) to bound the power between 0 and 1
a , brepresent significance levels at the 5% and 1%, respectively

Conditional Logit Bivariate Mixed Logit

N = 1017 
& 1229

Exploratory Confirmatory Exploratory Confirmatory

MO12 0.011 0.044b 0.014a 0.033b

MO23 0.044b 0.050b 0.044b 0.064b

MO34 0.141b 0.142b 0.110b 0.084b

MO45 0.117b 0.122b 0.069b 0.034b

SC12 0.027a 0.095b 0.025b 0.087b

SC23 0.038b 0.016 0.025b 0.045b

SC34 0.151b 0.110b 0.108b 0.062b

SC45 0.153b 0.147b 0.098b 0.090b

UA12 0.024a 0.018 0.015a 0.022b

UA23 0.027b 0.011 0.024b 0.027b

UA34 0.144b 0.173b 0.119b 0.131b

UA45 0.030 0.099b 0.027b 0.056b

PD12 -0.002 -0.016 0.021b -0.006

PD23 0.047b 0.050b 0.034b 0.061b

PD34 0.225b 0.215b 0.161b 0.153b

PD45 0.096b 0.092b 0.048b 0.048b

AD12 0.020 -0.022 0.035b 0.023b

AD23 0.100b 0.046b 0.058b 0.045b

AD34 0.163b 0.168b 0.123b 0.130b

AD45 0.033b -0.016 0.021a 0.000

µ(mean) 0.401b 0.062 0.988b 0.704b

r(mean) -0.196b -0.634b -0.003 -2.051b

µ(SD) 0.788b 0.998b

r(SD) 2.858b 3.120b

µ and r  
(corr)

0.836b 0.912b

V(55555) -0.588b -0.545b -0.180b -0.191b

LL -12,225 -14,278 -10,249 -11,890
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random parameter increases the log-likelihood, but had 
little impact on the significance of the effects.

When we allow for heterogeneity in both ancillary 
parameters (Table  1), there are substantive improve-
ments in the estimated incremental effects. In the 
bivariate mixed logit results, all 20 effects are positive 
and significant. The estimated standard deviations for 
µi and ri are 0.788 and 2.858, respectively, which sug-
gest that both the scale and rate parameters are het-
erogeneous. Furthermore, we find a strong correlation 
between µi and ri , 0.836 (p-value < 0.01).

In the bivariate mixed logit model, “immediate death” 
is better than experiencing the worst possible EQ-
5D-5L description for 1  year (i.e., V (55555) = −0.180 ); 
however, this value is closer to zero compared to the 
CL estimate. Apart from this difference in the lower 
bound, the twenty incremental effects are highly cor-
related and concordant between the CL and bivariate 
mixed logit estimates (Pearson correlation 0.970, Spear-
man correlation 0.916, Lin’s concordance 0.843). Fur-
thermore, we computed the mean scale and power of 
the bivariate mixed logit as � = exp(0.988) = 2.686 and 
α = exp(−exp(−0.003)) = 0.369 . Therefore, the bivari-
ate mixed logit model produce higher scale and lower 
power than the CL model.

Confirmatory results
The confirmatory CL results produce 6 insignificant 
incremental effects (i.e., SC23 , UA12 , UA23 , PD12 , AD12 , 
and AD45 ), 3 of which are negative (i.e., PD12 , AD12 , 
and AD45 ). Compared to the exploratory CL results, 
there are the same number of positive insignificant 
effects and 2 more negative effects. The confirmatory 
CL results suggest that the value of “immediate death” 
is better than experiencing the worst possible EQ-
5D-5L description for 1  year (i.e., V (55555) = −0.545 ), 
which is slightly lower than the exploratory CL estimate 
( 0.588 ). The estimated µ and r in the confirmatory CL 
are 0.062 and −0.634 , respectively. Therefore, the scale 
and power can be derived as � = exp(0.062) = 1.064 
and α = exp(−exp(−0.634)) = 0.588 . Compared to the 
confirmatory CL results, the exploratory scale is larger 
( 1.493 ), but its power is smaller ( 0.439).

When we allow for heterogeneity in scale and rate in 
the confirmatory analysis, there are substantive improve-
ments in the estimated incremental effects. Specifically, in 
the bivariate mixed logit results, there is only 1 negative 
(i.e., PD12 ) and 1 positive (i.e., AD45 ) insignificant incre-
mental effect. We computed the scale and power of the 
bivariate mixed logit model as � = exp(0.704) = 2.022 
and α = exp(−exp(−2.051)) = 0.879 , respectively, 
which are higher than those of the CL model. The 

estimated standard deviations for µi and ri are 0.998 and 
3.120, respectively, which suggests that both the scale 
and rate parameters are heterogeneous. Furthermore, 
we find a strong correlation between µi and ri , 0.912 
(p-value < 0.01).

In the bivariate mixed logit model, “immediate death” 
is better than experiencing the worst possible EQ-5D-5L 
description for 1 year (i.e., V (55555) = −0.191 ); however, 
this value is closer to zero compared to the CL estimate 
( −0.545 ). Apart from this difference in the lower bound, 
the twenty incremental effects are highly correlated and 
concordant between the CL and bivariate mixed logit 
estimates (Pearson correlation 0.897, Spearman correla-
tion 0.888, Lin’s concordance 0.763).

Discussion
In this paper, we explored and confirmed heterogeneity 
in scale and rate, their correlation, and their effects on 
the estimation of EQ-5D-5L values. Allowing heteroge-
neity in scale and rate improved the EQ-5D-5L value set 
estimates in terms of face validity, namely, reducing the 
number of insignificant incremental effects.

A higher discount rate ri implies that there is less variabil-
ity in the net present value of life years. For instance, with a 
high discount rate, the value of 10 years decreases toward 
the value of 1 year. A higher scale implies that smaller dif-
ferences in the value of health have a greater impact on log-
odds. In other words, a larger scale parameter means more 
sensitivity. Since our results suggest that there is a high 
positive correlation between the scale parameter and the 
discount rate, we can infer that people who discount the 
future are more sensitive to smaller differences in the net 
present value of life years. This important finding may be 
confirmed in future health valuation studies.

In practical terms, allowing for scale heterogeneity 
implies that the analyst should also allow for rate hetero-
geneity (or vice versa) as well as estimate the correlation 
between scale and rate. However, no econometric pack-
age is currently available to facilitate this specification of 
the mixed logit, which may deter its uptake. In terms of 
the experimental design and blocking, future studies may 
assign “dying immediately,” episodes of one-year dura-
tion, and multi-year episodes to each respondent. This 
blocking can aid in the identification of scale and rate 
heterogeneity. If future studies block accordingly and 
such a package becomes available, reporting this correla-
tion may become common practice in health valuation.

Although the twenty incremental effects are highly cor-
related and concordant between the CL and bivariate 
mixed logit estimates, controlling for scale and rate het-
erogeneity, reduced the size of the incremental effects, 
raising the lower bound of the EQ-5D-5L values from 
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-0.545 to -0.191. Although some effects decreased in size, 
the confirmatory bivariate estimation produced only two 
insignificant effects ( PD12 and AD45 ), which merits fur-
ther discussion. The incremental effect PD12 represents 
the effect of the change from no to slight pain or dis-
comfort. This effect is negative and insignificant in both 
the conditional logit models as well as the confirmatory 
bivariate mixed logit, which seems to suggest that U.S. 
adults are unwilling to sacrifice life years to relieve slight 
pain or discomfort. Further research is needed to verify 
this effect. The incremental effect AD45 represents the 
effect of the change from severely to extremely anxious 
or depressed. In two prior papers, Craig and colleagues 
[23, 24] showed that many U.S. adults prefer “extremely” 
over “severely” in this domain. This preference inversion 
contradicts the descriptive system and may be due to the 
diagnostic implications of severe mental health prob-
lems and/or the belief that moods may fluctuate between 
extrema under normal circumstances. The higher lower 
bound and two insignificant effects may accurately repre-
sent the EQ-5D-5L preferences of U.S. adults.

Although the incremental effects of the bivariate mixed 
logit model appear to be better in terms of sign and sig-
nificance, they are highly correlated with the CL esti-
mates (Pearson correlation 0.897, Spearman correlation 
0.888, Lin’s concordance 0.763). Figure  2 shows the 20 
incremental effects from the confirmatory CL and bivari-
ate mixed logit, where incremental effects are color-
coded by dimension (i.e., MO: red, SC: green; UA: blue, 
PD: yellow, AD: black). The differences between the esti-
mates seem to be larger among the more severe effects 
(from level 3 to 4 or from level 4 to 5).

Alternatively, some analysts may choose to use a hyper-
bolic discount function instead of a power function to 
allow for temporal discounting. Craig and colleagues 
[4] showed that decreasing the marginal value of life 
span under the assumption of power discounting pro-
vides better model fit than alternative functional forms. 
While Craig and colleagues [4] assumed a homogene-
ous discount rate (i.e., ri = r ), Jonker and colleagues [5] 
estimated the mixed logit model with a random hyper-
bolic discount rate and found strong evidence for non-
linear time preferences. In this study, we extended both 
approaches and estimated a bivariate mixed logit model 
allowing a correlation between scale and power.

Future analyses may allow for heterogeneity in the 
incremental effects as well as scale and discount rate 
parameters, building from these findings. Before the esti-
mation of such a complex model is attempted, we recom-
mend that the authors conduct simulation analyses to 
verify that they can mitigate the simulation biases. For 
instance, Jumamyradov and colleagues conducted a sim-
ulation study and showed that the mixed logit model can 
produce biased results even when the model is correctly 
specified [25]. Nevertheless, we believe that our more 
parsimonious specification produced reliable results 
since we found a high correlation both in exploratory and 
confirmatory datasets.

There are three limitations in our analysis that we 
would like to mention. First, our mixed logit analysis is 
based on MSL estimation. This may be problematic for 
the bivariate specification because Jumamyradov and 
colleagues [25] showed that the MSL estimator of the 
mixed logit has difficulty estimating correlations and 

Fig. 2 Plot of 20 incremental effects for the conditional logit and bivariate mixed logit
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may produce biased estimates even when correctly speci-
fied. Second, we assume only normally distributed ran-
dom parameters and may consider other distributional 
assumptions in future research. Third, because of com-
putational capacity constraints, we used only 250 Halton 
draws in our estimations, which is common place in the 
literature [22]. Some [26] have shown that increasing the 
number of Halton draws decreases the simulation bias 
for bivariate normal and bivariate Poisson-lognormal 
models.

Our study utilized EQ-5D-5L values from a United States-
specific valuation study. While the data source was specific 
to the U.S., the underlying principles and results of this 
study are not confined to the U.S. context alone. The meth-
odological approach and findings presented are designed to 
be broadly applicable and are likely to be generalizable to 
other settings. Similar methodologies can be applied to dif-
ferent populations and healthcare systems, reinforcing the 
validity of our approach across diverse settings.

We also would like to point that we acknowledge that the 
scale heterogeneity is a form of correlation among coeffi-
cients in mixed logit models [27, 28]. However, this is not 
relevant in our study since we are focusing on the correla-
tion between the scale parameter and the discount rate.

Conclusion
Allowing heterogeneity in rate and scale added three 
parameters to the conditional logit model (two vari-
ances and a correlation) and greatly improved the face 
validity of the EQ-5D-5L values. We confirmed that per-
sons who highly discount the future are more sensitive 
to differences in the net present value of QALYs. This 
intuitive pattern may be confirmed in future EQ-5D-5L 
valuation studies as well as influence experimental design 
and choice analysis in health preference research more 
generally.

Appendix

Table 1A. Results for univariate mixed logit models

Random 
scale

Random 
rate

N = 
1017 & 
1229

Exploratory Confirmatory Exploratory Confirmatory

MO12 -0.012 0.019b 0.003 0.025b

MO23 0.049b 0.076b 0.045b 0.064b

MO34 0.087b 0.093b 0.103b 0.082b

MO45 0.104b 0.054b 0.049b 0.028a

SC12 0.016 0.057b 0.022b 0.097b

SC23 0.023a 0.027b 0.020b 0.025b

Random 
scale

Random 
rate

N = 
1017 & 
1229

Exploratory Confirmatory Exploratory Confirmatory

SC34 0.130b 0.081b 0.101b 0.073b

SC45 0.082b 0.109b 0.089b 0.083b

UA12 -0.001 -0.011 0.016a 0.013a

UA23 0.018a 0.017a 0.020b 0.027b

UA34 0.127b 0.132b 0.118b 0.126b

UA45 0.030a 0.091b 0.013 0.067b

PD12 -0.007 -0.043b 0.013 -0.020b

PD23 0.035b 0.046b 0.029b 0.062b

PD34 0.155b 0.175b 0.140b 0.142b

PD45 0.124b 0.065b 0.058b 0.034b

AD12 0.009 -0.023b 0.030b 0.012

AD23 0.083b 0.032b 0.060b 0.043b

AD34 0.094b 0.138b 0.101b 0.122b

AD45 0.018a 0.002 0.014 0.013

μ (mean) 0.194 0.228b 1.275b 0.899b

r (mean) -0.227a -0.483b 0.422b -0.489b

μ (SD) 1.232b 1.136b

r (SD) 1.325b 1.320b

V(55555) -0.162b -0.134b -0.043b -0.118b

LL -11964 -12989 -10666 -12279

Notice that the scale parameter is equal to  and the power is equal to  to bound 
the power between 0 and 1
a , b represent significance levels at 5% and 1%, respectively
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