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Abstract
Objective The Audit of Diabetes-Dependent Quality of Life (ADDQoL) is a widely used instrument for assessing 
quality of life in Type 2 Diabetes Mellitus (T2DM). However, it does not directly yield health utility values essential for 
economic evaluations. This study developed mapping algorithms to predict EQ-5D-5L and SF-6Dv2 utility values from 
ADDQoL scores in T2DM patients in China.

Methods Cross-sectional data from 800 T2DM patients in China, stratified by age, sex, and geographical region, 
were divided into development (80%) and validation (20%) groups. Pearson correlation analyses were conducted 
to assess the conceptual overlap between ADDQoL and the EQ-5D-5L and SF-6Dv2. Six predictor sets and six 
regression methods were explored to map ADDQoL scores to EQ-5D-5L and SF-6Dv2 utility values, respectively. 
Model performance was evaluated using mean absolute error (MAE), root mean square error (RMSE), and intraclass 
correlation coefficient (ICC).

Results For the development group, the mean (SD) ADDQoL Average Weighted Impact (AWI) score was − 2.426 
(1.052), and the mean (SD) utility values for EQ-5D-5L and SF-6Dv2 were 0.928 (0.092) and 0.791 (0.133), respectively. 
Among all 36 alternative mapping models each for EQ-5D-5L and SF-6Dv2, the best performance was consistently 
observed in the two-part models that included the ADDQoL AWI, the first overview item, and their squared terms. For 
the algorithm mapping to EQ-5D-5L utility values, it achieved a MAE of 0.067, a RMSE of 0.095, and an ICC of 0.414; For 
the algorithm mapping to SF-6Dv2 utility values, the corresponding metrics were an MAE of 0.099, an RMSE of 0.120, 
and an ICC of 0.517.

Conclusions This study provides a mapping framework to estimate EQ-5D-5L and SF-6Dv2 utility values from 
ADDQoL scores. These algorithms could be used to support economic evaluations, specifically tailored for Chinese 
T2DM populations.
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Introduction
Type 2 Diabetes Mellitus (T2DM), one of the most preva-
lent chronic metabolic diseases, is characterized by per-
sistent hyperglycemia caused by insulin resistance and 
inadequate insulin secretion [1]. Between 1990 and 2022, 
the global prevalence of diabetes among adults doubled 
from 7 to 14%, affecting over 830  million people [1, 2]. 
In China, the prevalence of T2DM has increased more 
than tenfold over the past 40 years, driven by a large 
population base, rapid socioeconomic development, and 
urbanization, resulting in over 140.9 million cases — the 
highest worldwide [2, 3]. Diabetes contributes to numer-
ous complications, including cardiovascular diseases, 
inflammation, and liver disorders, leading to reduced 
quality of life, premature mortality, and significant finan-
cial risk for patients [4]. Managing T2DM complications 
also imposes substantial costs on China’s healthcare 
system [5], with projections indicating that total diabe-
tes-related costs will rise from $250.2  billion in 2020 to 
$460.4  billion in 2030, reflecting an annual growth rate 
of 6.32%. Meanwhile, the per capita economic burden 
is expected to increase from $231 to $414, with a 6.02% 
annual growth rate [6].

To address these challenges, health systems may con-
sider implementing cost-effective strategies to optimize 
healthcare intervention allocation and alleviate the dis-
ease burden. Cost-utility analysis (CUA) is commonly 
employed in health economic evaluations to assess the 
values of healthcare interventions [7]. The core of CUA 
lies in calculating quality-adjusted life years (QALYs) 
to compare the health gains of interventions within or 
across conditions. The measurement of health utility val-
ues is critical for the calculation of QALYs [8]. Health util-
ity values, lying on a scale of 0 (death) to 1 (full health), 
can reflect health-related quality of life (HRQoL), a mul-
tidimensional concept assessing health status through 
physical, psychological, and social functioning [9]. Health 
utility is typically measured by generic preference-based 
measures (GPBM), with the EQ-5D and SF-6D being 
the most commonly applied measures, These measures 
have been extensively validated and adopted in util-
ity measurement and economic evaluations worldwide 
[10, 11, 12]. China Guidelines for Pharmacoeconomic 

Evaluations (2020 edition) also recommends using the 
EQ-5D and SF-6D for assessing health utilities among the 
Chinese population [13, 14].

However, previous studies have indicated that GPBMs 
tend to be more responsive to co-morbid conditions 
than to the specific HRQoL factors associated with par-
ticular diseases [15, 16]. Furthermore, several studies 
have shown that the sensitivity of GPBMs may decrease 
in populations, which affected by more severe diseases 
or conditions having particular dimensions not ade-
quately captured by GPBMs [17, 18]. Clinical trials and 
empirical studies focusing on specific diseases commonly 
include disease-specific measures to assess the HRQoL 
of patients to collect more sensitive results [16]. While 
non-preference-based disease-specific HRQoL mea-
sures do not link health states to utility values. A feasible 
solution is to use mapping (or “crosswalk”) functions to 
convert these disease-specific HRQoL data into utility 
values compatible with GPBMs [16, 19]. Studies on map-
ping in the field of diabetes remains relatively limited. In 
2014, Vokó et al. mapped the Nottingham Health Profile 
(NHP), a non-diabetes-specific instrument for assess-
ing HRQoL across physical and emotional dimensions, 
directly to the EQ-5D-3  L based on data from T2DM 
patients (N = 943) in Hungary [20]. The best-fitting mod-
els included all the NHP statements as predictors, dem-
onstrating mapped utility values ranging from − 0.23 to 
1.05 (adjusted R2 = 0.68, RMSE = 0.174). In China, the 
only existing mapping study, developed by Wu et al. 
in 2022, mapped the Diabetes-Specific Quality of Life 
(DSQL) to the EQ-5D-3  L utility values (N = 493) [21]. 
Its optimal algorithm was constructed through the Cen-
sored Least Absolute Deviations (CLAD) model, which 
achieved an adjusted R2 of 0.4296, a mean absolute error 
(MAE) of 0.0345, and mapped utility values ranging from 
0.63 to 1.

While there are limited studies evaluating the measure-
ment properties of DSQL. The Audit of Diabetes-Depen-
dent Quality of Life (ADDQoL) is another instrument 
widely used around the world for assessing the impact 
of diabetes on patients’ quality of life, integrating general 
quality of life assessments with diabetes-specific effects 
[22, 23, 24, 25, 26, 27]. It has demonstrated strong mea-
surement properties in Chinese populations [28, 29, 30, 
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31, 32]. Nevertheless, there is a lack of empirical studies 
that developing a mapping function to link ADDQoL 
scores to GPBMs among T2DM population.

Therefore, this study aims to develop mapping algo-
rithms to directly predict EQ-5D-5L and SF-6Dv2 utility 
values based on ADDQoL scores among patients with 
T2DM in China.

Methods
The methods used in this study adhered to the guidelines 
outlined by the International Society for Pharmacoeco-
nomics and Outcomes Research (ISPOR) Good Practices 
for Outcomes Research Task Force Report on mapping, 
as well as the technical support document from the 
National Institute for Health and Care Excellence (NICE) 
on using mapping methods to estimate utility values 
[19, 33]. This study also applied the Mapping onto Pref-
erence-based Measures (MAPS) checklist [34], detailed 
in Appendix Table  1. The study protocol was approved 
by the Academic Ethics Committee of Tianjin Univer-
sity (No. TJUE-2023-206), and all participants provided 
informed consent.

Data collection
This analysis is based on data collected from a national 
survey conducted between October 2023 and January 
2024, which aimed to assess the health status and treat-
ment preferences of T2DM patients in China. The target 
sample size was 800, recruited from eight cities (Bei-
jing, Guangzhou, Shanghai, Baoding, Chongqing, Jiuji-
ang, Mianyang and Wuhan) and surrounding rural areas 
across China to ensure geographic diversity and repre-
sentation of varying levels of economic development. A 
quota sampling method was used to recruit the sample 
stratified by age and sex of patients with T2DM in China 
[35]. Online recruitment and street intercept interviews 
were used for the data collection, with both methods 
complemented by face-to-face interviews to ensure sam-
ple representativeness and data validity. Street intercept 
interview improved accessibility for random respondent 
recruitment, allowing offline face-to-face participation 
for individuals with low literacy or those unfamiliar with/
lacking access to online platforms, while enabling easier 
large-scale sample collection at a lower cost. However, 
street intercept interviews might be limited to certain 
types of patients, such as those with severe conditions 
and mobility impairments. Therefore, we also utilized 
face-to-face online recruitment to balance potential 
selection bias [36].

All interviews were conducted by trained interview-
ers, whose responsibilities included: (1) introducing the 
study purpose and questionnaire structure, (2) obtaining 
informed consent, (3) providing scripted clarifications 
based on pre-defined protocols only when participants 

explicitly struggled to understand a question’s wording 
or intent, and (4) supervising questionnaire completion 
to ensure data validity. Inclusion criteria required partici-
pants to be (1) aged ≥ 18 years, (2) diagnosed with T2DM 
for at least three months, (3) free from cognitive burdens 
and able to use online devices, and (4) willing to provide 
informed consent.

Eligible participants completed a questionnaire specifi-
cally designed for individuals with T2DM, with the help 
provided by interviewers if needed. The questionnaire 
first collected sociodemographic characteristics (e.g., age, 
sex, and education), and general information related to 
lifestyle and health behaviors (e.g., BMI). Self-reported 
answers of the EQ-5D-5L and SF-6Dv2 were then 
obtained with a randomized order. Additional diabetes-
related information, such as duration since diagnosis, 
fasting blood glucose levels, and the presence of com-
plications, was recorded. Finally, participants completed 
the ADDQoL. Data were subjected to quality control 
criteria, including (1) no missing responses and (2) pro-
vided correct answer to a question regarding identifying 
T2DM medications from several options of medications 
for various diseases. Data not meeting these criteria were 
excluded from the study.

Source and target measures
ADDQoL serves as the source measure, and both the 
EQ-5D-5L and SF-6Dv2 serve as the target measures 
in this study. The EQ-5D-5L has been demonstrated to 
have better measurement properties than the EQ-5D-3 L 
among the Chinese and international populations [37, 
38, 39]. For the SF-6D, only the SF-6Dv2 has the officially 
validated Chinese version and corresponding utility value 
set in mainland China [40, 41]. Therefore, these two mea-
sures were chosen in this study.

The ADDQoL is a specialized instrument designed for 
adults and adolescents aged 16 and above with Type 1 or 
Type 2 Diabetes, focusing on those who are no longer in 
school [29, 32, 42]. The instrument consists of two sec-
tions: the first assesses general quality of life (QoL) and 
overall diabetes-specific impact using two overview items 
(OI1, OI2), while the second examines diabetes’ effects 
on 19 specific domains, including “yes/no” applicability 
filters for certain domains, to prevent respondents from 
having no life experience in that area. Each respondent 
needs to report the impact and importance ratings of 
diabetes on each domain. Weighted impact (WI) scores 
are derived by combining impact and importance rat-
ings, ranging from − 9 (maximum negative impact) to 
+ 3 (maximum positive impact). The Average Weighted 
Impact (AWI) score is subsequently calculated as the 
mean of applicable WI scores [42].

The EQ-5D-5L is a widely used GPBM that assesses 
HRQoL across five dimensions: Mobility (MO), Self-care 
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(SC), Usual activities (UA), Pain/discomfort (PD), and 
Anxiety/depression (AD), each with five response levels, 
creating 3,125 possible health states. It also includes a 
Visual Analogue Scale ranging from 0 to 100, represent-
ing the respondent’s subjective health evaluation [43]. 
The utility value set has been developed in China using 
the time trade-of (TTO) approach, with the range of 
−0.391 (55,555) to 1 (11,111) [44].

The SF-6Dv2, derived from the SF-36, measures 
HRQoL across six dimensions: Physical functioning (PF), 
Role limitations (RL), Social functioning (SF), Pain (PN), 
Mental health (MH), and Vitality (VT). While the Pain 
dimension includes six response levels, others have five, 
allowing for 18,750 possible health states [45]. The vali-
dated Chinese version ensures conceptual equivalence to 
the English version [40], and the Chinese SF-6Dv2 value 
set has been developed based on the time trade-of (TTO) 
approach, range from − 0.277 to 1 [41].

Data analysis
The total sample was divided into a development group 
(80%) and a validation group (20%) through random 
allocation [46]. T-tests and Fisher’s exact tests were con-
ducted to compare demographic characteristics, health-
related information, diabetes-related features, and scores 
from ADDQoL AWI, EQ-5D-5L, and SF-6Dv2 between 
the two groups. Continuous variables were reported as 
means with standard deviations (SD), while categorical 
variables were presented as frequencies and percentages 
[47, 48]. Histograms were created to visualize the distri-
butions of the EQ-5D-5L and SF-6Dv2 responses. Data 
normality was also assessed. When normality assump-
tions were not met, the Shapiro-Wilk test was applied to 
evaluate deviations from normality [49].

Before developing mapping algorithms, the concep-
tual overlap between the source and target measures was 
assessed. Pearson correlation coefficients (r) were cal-
culated to examine the associations between ADDQoL 
scores and EQ-5D-5L or SF-6Dv2 utility values [50]. Cor-
relation strength was categorized as strong (r ≥ 0.5), mod-
erate (0.3 ≤ r < 0.5), or weak (r < 0.3) [51].

Model specification
This study applied a direct mapping method to convert 
ADDQoL onto EQ-5D-5L and SF-6Dv2 utility values, 
where predictor sets and regression methods serve as the 
two key components for direct mapping.

This study developed six predictor sets to systemati-
cally explore the optimal mapping models. Predictor set 
1 used only the ADDQoL AWI score as a continuous 
independent variable. Predictor set 2 employed stepwise 
regression to select key variables from the WI scores of 
19 items. Predictor set 3 incorporated the two overview 
items, OI1 and OI2 alongside the AWI score, integrating 

them for analysis. To account for potential nonlinear 
effects, Predictor set 4 added squared terms to Predictor 
set 3, preserving the positive or negative characteristics 
of OI1, OI2, and AWI through a sign function. Expand-
ing on this, Predictor set 5 included cubic terms for more 
detailed modeling of nonlinear relationships. Lastly, Pre-
dictor set 6 combined OI1, OI2, and the critical WI items 
identified through stepwise regression. All predictor sets 
were refined using backward stepwise regression at a 
significance level of 0.05 to ensure explanatory strength 
[52]. Predictors with unexpected directional coefficients 
(e.g., higher QoL correlating with lower utility values) 
were excluded to maintain logical consistency and model 
robustness [53].

Six regression methods were also applied for analysis: 
Ordinary Least Squares (OLS), Tobit model, Censored 
Least Absolute Deviations (CLAD), Generalized Linear 
Model (GLM), Two-Part Model (TPM), and Beta Regres-
sion Mixture Model (BM). OLS, the most common 
method, minimizes squared errors between observed and 
predicted values but requires strict assumptions, includ-
ing linearity, homoscedasticity, and normal residuals [54, 
55]. The Tobit model accounts for the right-censoring 
of utility value at 1, capturing underlying distribution 
characteristics suitable for censored linear data [56, 57]. 
CLAD provides robust conditional median estimates 
by minimizing absolute errors, free from normality or 
homoscedasticity assumptions, making it ideal for cen-
sored or truncated data [58]. GLM offers flexibility with 
link functions to model nonlinear relationships and vari-
ance functions to handle heteroscedasticity [47]. Based 
on modified Park tests and Box-Cox methods, GLM used 
a Gamma distribution and power link function for EQ-
5D-5L and SF-6Dv2 to ensure consistent estimates [59]. 
TPM excelled with ceiling effects by using logistic regres-
sion for predicting full health and OLS for partial health, 
combining these for overall predictions [19, 60]. Lastly, 
BM, comprising a beta mixture model for continuous 
data and a multinomial logit for boundary data, demon-
strated notable advantages in utility values mapping by 
accommodating variable distributions and the 0–1 utility 
values range, aligning with utility values characteristics 
[61, 62].

Model performance
36 candidate models were developed each for predicting 
EQ-5D-5L and SF-6Dv2 utility value by combining six 
regression methods with six predictor sets. The optimal 
models for the EQ-5D-5L and SF-6Dv2 were selected 
in both the development and validation groups based 
on three criteria. First, predicted utility values had to 
fall within a reasonable range, with maximum value not 
greater than 1, and minimum value approximating the 
lowest assessable values of the EQ-5D-5L (-0.184) and 
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SF-6Dv2 (-0.179). Second, the model has satisfied predic-
tion accuracy, which was measured using mean absolute 
error (MAE) and root mean square error (RMSE), with 
lower values indicating better models; as well as intra-
class correlation coefficients (ICC), with higher values 
indicating better models [63]. ICC was calculated using a 
bidirectional random-effects model with absolute agree-
ment to assess the consistency between predicted and 
observed values [46]. For each model, the MAE, RMSE, 
and ICC values were ranked separately in both the 
development and validation groups. The average rank-
ing orders for each of these three metrics was then cal-
culated, and an overall average ranking (AR) was derived 
based on these average orders [64]. Third, among models 
with crossover predictive performance in the develop-
ment group and validation group, the simplest model was 
preferred.

It is important to note that Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC) are 
only comparable within models sharing the same likeli-
hood function framework and dataset [46, 56]. Since AIC 
and BIC could not be applied to CLAD due to its lack of 
likelihood estimation, and differences in model assump-
tions, such as the Tobit model’s handling of right-cen-
soring and GLM’s ability to accommodate non-normal 
distributions, which further limited direct comparisons. 
For TPM, separate AIC and BIC values were computed 
for each component, complicating comparisons with sin-
gle-framework models [46, 56]. Consequently, this study 
emphasized MAE, RMSE, ICC, and AR as the primary 
criteria for model evaluation.

For more visualized comparisons, scatter plots, bar 
charts, and Bland-Altman plots were also employed. 
Scatter plots and bar charts were used to explore trends, 
biases, and agreement between predicted and observed 
utility values [41, 65]. Bland-Altman plots provided 
insights into the average differences between predicted 
and observed values, emphasizing the distribution of bias 
and its potential impact [66].

All analyses were conducted using Stata 16.0 (Stata-
Corp LLC, College Station, TX, USA).

Results
Descriptive statistics
Of the 1353 respondents invited to participate in the 
survey, 1045 respondents agreed to participate, with a 
response rate of 77.2%. 237 respondents were excluded 
due to ineligibility for the quotas (N = 205), or could not 
provide proof of diagnosis or medication (N = 32). There-
fore, 808 respondents met the inclusion criteria. Eight 
respondents were excluded because they did not com-
plete the interview. Finally, a total of 800 respondents 
were included in this study, with demographic details 
presented in Table 1. The mean (SD) age was 50.4 (11.9) 

years, with males accounting for 52.8% (N = 422). The 
mean (SD) BMI was 24.4 (3.8), falling within the interval 
for overweight, and the mean (SD) disease duration was 
5.7 (4.9) years. Additionally, 57.6% (N = 461) of respon-
dents reported a family history of diabetes. No signifi-
cant differences were observed between the development 
group (N = 640) and validation group (N = 140) in terms 
of demographic characteristics, health-related life infor-
mation, diabetes features, ADDQoL scores, and EQ-
5D-5L and SF-6Dv2 utility values.

The mean (SD) ADDQoL AWI score was − 2.426 
(1.052), ranging from − 5.375 to 0. The mean (SD) util-
ity values for EQ-5D-5L and SF-6Dv2 were 0.928 (0.092) 
and 0.791 (0.133), respectively, with ranges of 0.365–1 
and 0.136–1. Figure  1 presents the distributions of EQ-
5D-5L and SF-6Dv2 utility values, which were found to 
deviate from normality according to the Shapiro-Wilk 
test (P < 0.001).

Conceptual overlap
Table 2 presents the results of Pearson correlation analy-
ses between the source and target measures. Moderate 
correlations (0.3 ≤ r < 0.5) were observed between the 
utility values of EQ-5D-5L and SF-6Dv2 and the OI1 of 
ADDQoL. Additionally, significant negative correlations 
(-0.026 to -0.368) were observed between the dimension 
scores of EQ-5D-5L and SF-6Dv2 and both the AWI and 
OI1 scores of ADDQoL.

Mapping ADDQoL onto EQ-5D-5L utility values
The performance of 36 regression models mapping 
ADDQoL to EQ-5D-5L utility value was summarized 
in Table  3. In the development group, Predictor set 4 
consistently emerged as the best-performing predic-
tor set across all regression methods based on AR. In 
the validation group, models using Predictor set 4 were 
optimal for OLS, GLM, TPM, and BM, while inconsis-
tencies were observed for Tobit (Predictor set 6) and 
CLAD (Predictor set 5). Considering the ARs of MAE, 
RMSE, and ICC, TPM4 demonstrated superior predic-
tive accuracy and consistency in both the development 
(MAE = 0.056, RMSE = 0.079, ICC = 0.463, R² = 0.181, 
adjusted R² = 0.180) and validation groups (MAE = 0.067, 
RMSE = 0.095, ICC = 0.414, R² = 0.183, adjusted R² = 
0.178), with predicted utility values range meeting expec-
tations. Figure 2 illustrates the performance of the TPM4 
in the validation set. Both the bar chart and Bland–Alt-
man plot reveal that TPM4 consistently outperforms 
other models, demonstrating greater predictive accu-
racy and smaller discrepancies between predicted and 
observed utility values (Appendix Fig. 1).
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Mapping ADDQoL onto SF-6Dv2 utility values
Table 4 outlines the performance of 36 regression mod-
els mapping ADDQoL to SF-6Dv2 utility values. In the 
development group, Predictor set 4 consistently emerged 
as the optimal predictor set across all regression meth-
ods. However, in the validation group, only TPM iden-
tified Predictor set 4 as the best-performing model, 
while other methods demonstrated inconsistencies. 
Considering the ARs of MAE, RMSE, and ICC, TPM4 

achieved the highest predictive accuracy and consis-
tency across both the development group (MAE = 0.094, 
RMSE = 0.117, ICC = 0.537, R² = 0.225, adjusted R² 
= 0.224) and the validation group (MAE = 0.099, 
RMSE = 0.120, ICC = 0.517, R² = 0.197, adjusted R² = 
0.192), with predicted utility ranges aligning with expec-
tations. Visual analyses, including bar plots and Bland–
Altman plots, further highlight that TPM4 consistently 
provided predictions more closely aligned with observed 

Table 1 Socio-demographic characteristics of study sample
Total sample (n = 800) Development group(n = 640) Validation group (n = 160) P value

N (%)
Age
 Mean (SD) 50.4 (11.9) 50. 5 (11.7) 50.0 (12.6) 0.683
Age groups
 18–27 15 (1.9%) 11 (1.7%) 4 (2.5%) 0.096
 28–37 99 (12.4%) 72 (11.3%) 27 (16.9%)
 38–47 248 (31.0%) 209 (32.7%) 39 (24.4%)
 48–57 166 (20.8%) 130 (20.3%) 36 (22.5%)
 58–67 216 (27.0%) 177 (27.7%) 39 (24.4%)
 >=68 56 (7.0%) 41 (6.4%) 15 (9.4%)
Sex
 Male 422 (52.8%) 336 (52.5%) 86 (53.8%) 0.791
Regions
 Northern China 206 (25.8%) 160 (25.0%) 46 (28.8%) 0.489
 Eastern China 112 (14.0%) 86 (13.4%) 26 (16.3%)
 Central China 184 (23.0%) 148 (23.1%) 36 (22.5%)
 Western China 184 (23.0%) 149 (23.3%) 35 (21.9%)
 Southern China 114 (14.3%) 97 (15.2%) 17 (10.6%)
Education
 Primary school/below 9 (1.1%) 8 (1.3%) 1 (0.6%) 0.788
 Junior high school 75 (9.4%) 58 (9.1%) 17 (10.6%)
 High school 270 (33.8%) 213 (33.3%) 57 (35.6%)
 University/above 446 (55.8%) 361 (56.4%) 85 (53.1%)
Family history of diabetes
 Yes 461 (57.6%) 374 (58.4%) 87 (54.4%) 0.372
 No 339 (42.4%) 266 (41.6%) 73 (45.6%)
Disease duration
 Mean (SD) 5.7 (4.9) 5.6 (4.9) 5.8 (4.8) 0.775
Blood glucose
 Mean (SD) 7.6 (1.9) 7.5 (1.8) 7.8 (2.1) 0.058
BMI
 Mean (SD) 24.4 (3.8) 24.3 (3.8) 24.7 (3.7) 0.317
SF-6Dv2 utility
 Mean (SD) 0.791 (0.133) 0.793 (0.133) 0.782 (0.133) 0.361
 Range (min, max) 0.136,1 0.136,1 0.395,1
EQ-5D-5L utility
 Mean (SD) 0.928 (0.092) 0.931 (0.088) 0.916 (0.104) 0.070
 Range (min, max) 0.365,1 0.365,1 0.431,1
ADDQoL AWI
 Mean (SD) -2.426 (1.052) -2.441 (1.048) -2.370 (1.065) 0.446
 Range (min, max) -5.375,0 -5.375,0 -4.529,0
P value came from two independent sample t-test or Fisher’s exact test between development group and validation group

SD standard deviation; BMI body mass index; ADDQoL AWI The average weighted impact score of the Audit of Diabetes-Dependent Quality of Life
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Fig. 1 Distribution of the EQ-5D-5L and the SF-6Dv2 utility value (N = 800). (a) The distribution of the EQ-5D-5L utility value (N = 800). (b) The distribution 
of the SF-6Dv2 utility value (N = 800)
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values (Fig. 2), outperforming other regression models in 
terms of accuracy and agreement in SF-6Dv2 mapping 
(Appendix Fig. 2).

Use of optimal mapping algorithms
The mapping algorithms from ADDQoL to EQ-5D-5L 
and SF-6Dv2 utility values both selected AWI, OI1, and 
their squared terms as the predictor set, with two-part 
models employed as the regression methods. The final 
mapping algorithms are defined as follows:

Defining sign function:

 
sign(x) =

{
1, x > 0
0, x = 0
−1, x < 0

Mapping ADDQoL onto EQ-5D-5L.

(1) Prediction probability function:

 

logit(Pr(DisEQ05D05L)) = 0.4895366 − 1.193757
×OI1 − 0.7301487 × AWI + 0.2285856×(

sign (OI1) × (OI1)2
)

+ 0.1427682×
(
sign (AWI) × (AWI)2

)

 

Pr (DisEQ − 5D − 5L > 0) =
1

1 + e− log it(Pr(DisEQ−5D−5L>0))

(2) Expected value prediction of DisEQ-5D-5L:

 

E(DisEQ05D05L|DisEQ05D05L > 0)
= 0.1055585 − 0.0820005×

OI1 − 0.0297864 × AWI + 0.0279237×
(sign(OI1) × (OI1)2) + 0.0050551

×(sign (AWI) ×
(
AWI)2)

(3) Transformed EQ-5D-5L utility values:

 
Dis EQ − 5D − 5L = Pr (Dis EQ − 5D − 5L > 0) ×

E (Dis EQ − 5D − 5L| Dis EQ − 5D − 5L > 0)

 Dis EQ − 5D − 5LUtility = 1 − Dis EQ − 5D − 5L

Mapping ADDQoL onto SF-6Dv2.

(1) Prediction probability function:

 

logit(Pr(DisSF06Dv2)) =
3.629165 − 2.230134×

OI1 − 0.8203494 × AWI

+0.5761989 ×
(
sign (OI1) × (OI1)2

)

+0.2054717 ×
(
sign (AWI) × (AWI)2

)

 

Pr(DisSF06Dv2 > 0) =
1

1 + e−logit(P r(DisSF06Dv2>0))

(2) Expected value prediction of DisSF-6Dv2:

Table 2 Pearson correlation coefficients between ADDQoL and EQ-5D-5L/SF-6Dv2
ADDQoL OI1 ADDQoL OI2 ADDQoL AWI

SF-6Dv2 PF -0.279 -0.011 -0.057
RL -0.368 -0.026 -0.095
SF -0.351 -0.036 -0.152
PN -0.317 0.003 -0.059
MH -0.299 -0.012 -0.076
VT -0.343 -0.108 -0.075
Utility 0.433 0.044 0.106

EQ-5D-5L
MO -0.229 -0.024 -0.092
SC -0.178 0.024 -0.026
UA -0.279 0.029 -0.074
PD -0.317 0.008 -0.059
AD -0.310 0.016 -0.045
Utility 0.375 -0.002 0.088

Abbr: ADDQoL OI1, Overview item1; OI2, Overview item2; AWI, The average weighted impact score of the Audit of Diabetes-Dependent Quality of Life; MO, Mobility; 
SC, Self-care; UA, Usual Activities; PD, Pain/Discomfort; AD, Anxiety/Depression; PF, Physical Functioning; RL, Role Limitations; SF, Social Functioning; PN, Pain; MH, 
Mental Health; VT, Vitality
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E(DisSF06Dv2|DisSF06Dv2 > 0)
= 0.2090763 − 0.1087293×

OI1 − 0.0527731×
AWI + 0.0251571×

(sign(OI1) × (OI1)2)+
0.0076547 × (sign (AWI) ×

(
AWI)2)

(3) Transformed SF-6Dv2 utility values:

 

DisSF06Dv2 = Pr(DisSF06Dv2 > 0)×
E(DisSF06Dv2|DisSF06Dv2 > 0)

 SF06Dv2Utility = 1 − DisSF06Dv2

For example, when the ADDQoL AWI score is -0.125, 
OI1 score is 1, the probability that the EQ-5D-5L nega-
tive utility value is greater than 0 is 0.405, the expected 
EQ-5D-5L negative utility value is 0.055, and the pre-
dicted EQ-5D-5L utility value derived from the conver-
sion is 0.978; The probability that the SF-6Dv2 negative 
utility value is greater than 0 is 0.888, the expected SF-
6Dv2 negative utility value is 0.132, and the predicted SF-
6Dv2 utility value derived from the conversion is 0.883.

Discussion
The ADDQoL is a widely utilized instrument for assess-
ing HRQoL in individuals with Type 2 Diabetes Melli-
tus. However, to date, no mapping algorithms based on 
ADDQoL for T2DM populations have been developed. 
This study represents the first effort to map ADDQoL 
to EQ-5D-5L and SF-6Dv2 utility values among Chinese 
T2DM population. The findings indicate that the two-
part regression model using ADDQoL’s AWI scores, OI1 
scores, and their squared terms as predictors demon-
strated the most accurate predictions for EQ-5D-5L and 
SF-6Dv2 utility values.

As no existing mapping algorithms link ADDQoL to 
the EQ-5D-5L or SF-6Dv2, direct comparisons with 
prior studies were not feasible. Nonetheless, this study 
demonstrated modest associations between ADDQoL’s 
OI1, AWI scores, and both EQ-5D-5L and SF-6Dv2 util-
ity values. Pearson correlation coefficients indicated 
moderate to weak associations between ADDQoL’s OI1 
and AWI and the dimensions and utility values of the 
EQ-5D-5L and SF-6Dv2. These findings align logically 
and are consistent with previous studies, in a past study 
using the Chinese version of ADDQoL, the AWI scores 
obtained also showed a weak correlation with these two 
GPBMs (Spearman’s rank correlation coefficient = 0.164 
for EQ-5D-3 L, and 0.281 for the short form-36) [67, 68]. 
The moderate to weak correlations may stem from lim-
ited structural overlap between ADDQoL and the target 
measures, confined primarily to psychological health M
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dimensions, failing to capture broader HRQoL aspects 
[22, 26, 67]. This highlights the limitations of GPBMs in 
representing the nuanced HRQoL of T2DM patients. 
Consequently, mapped utility values derived from 
ADDQoL may better reflect the specific health states of 
T2DM patients in the absence of GPBM data. Notably, 
OI1 exhibited the strongest correlations with EQ-5D-5L 
(r = 0.375) and SF-6Dv2 (r = 0.433) utility values, under-
scoring its sensitivity and relevance to mapping studies. 
This robust association likely arises from OI1’s focus on 
“how you feel about your life right now,” aligning closely 
with the conceptual framework of general quality of life 
(QoL) and health utility values [42].

This study systematically evaluated different predic-
tor sets, confirming previous findings that incorporat-
ing polynomial terms enhances model fit [69, 70]. The 
optimal predictor set identified in this research included 
ADDQoL’s OI1, AWI scores, and their squared terms, 
forming the basis of the best-performing polynomial 
model. Model selection adopted an AR across all three 
indicators to avoid bias and ensure that the chosen model 

demonstrated optimal accuracy, consistency, and stabil-
ity [64], which relied on three key metrics: mean absolute 
error (MAE) and root mean square error (RMSE) directly 
reflect predictive accuracy, and the intraclass correlation 
coefficient (ICC), which assesses consistency between 
predicted and observed values, reflecting stability and 
reproducibility. Among six regression methods tested 
in this study, the two-part model TPM4 consistently 
exhibited superior performance in predicting health 
utility values for EQ-5D-5L and SF-6Dv2 in both devel-
opment and validation groups. This result aligns with Yi 
Jing Tan et al.‘s findings, where TPM was also identified 
as the best regression approach for mapping the Assess-
ment of Quality of Life-6 Dimensions (AQoL-6D) to 
EQ-5D-5L in a Malaysian population [71]. Furthermore, 
when compared to a previously developed mapping 
function for EQ-5D-3 L in a Hungarian T2DM patients 
(RMSE = 0.174), the optimal function in this study dem-
onstrated significantly higher accuracy (EQ-5D-5L: 
RMSE = 0.079; SF-6Dv2: RMSE = 0.117) and a more rea-
sonable utility values prediction range [20]. Additionally, 

Fig. 2 The optimal model performance is mapped onto the utility values of EQ-5D-5L and SF-6Dv2 in validation group (N = 160)
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existing evidence supports that EQ-5D-5L and SF-6Dv2, 
as target measurements, exhibit superior psychomet-
ric properties over EQ-5D-3  L, better capturing patient 
health utility values [72].

Research suggests that more flexible modeling 
approaches, such as Beta regression mixture (BM) mod-
els, may effectively address heteroscedasticity in the map-
ping process and yield more precise predictions across 
the full utility values range of 0 to 1 [61, 62, 73]. As shown 
in Appendix Fig.  2, BM4, based on the Beta mixture 
regression method, marginally outperformed TPM4 in 
the ADDQoL-to-SF-6Dv2 development group for both 
MAE (BM4: 0.0937; TPM4: 0.0938) and RMSE (BM4: 
0.11680; TPM4: 0.11683), demonstrating notably supe-
rior fit for lower utility values. The potential advantages 
of BM in predictive accuracy warrant attention. However, 
an examination of Bland–Altman plots for mapping to 
EQ-5D-5L (Fig.  2) reveals BM models’ relatively mod-
est performance in consistency between predicted and 
observed values compared to TPM. Furthermore, incon-
sistencies in BM results between the development and 
validation groups for SF-6Dv2 (Table  4) highlight con-
cerns about the model’s stability. Notably, OLS also dem-
onstrated competitive performance, ranking second only 
to TPM in developing models for EQ-5D-5L utility values 
(Table 3). This suggests that simple OLS-based mapping 
models can achieve robust results, as some prior studies 
have similarly opted for OLS when differences in model 
performance were negligible [74]. Nonetheless, the lack 
of standardized criteria for acceptable performance dis-
parities underscores the rationale for selecting TPM4 as 
the optimal mapping function in this study, given its best 
performance across metrics. Importantly, the variabil-
ity in model outcomes is likely more attributable to the 
development sample than to inherent limitations of these 
regression approaches, highlighting the need for future 
research to further explore comparative performance 
across these methods.

The Bland-Altman analysis revealed that the two opti-
mal models mapping ADDQoL to EQ-5D-5L and SF-
6Dv2 utility values slightly underestimated the mean 
utility values (Mean difference for EQ-5D-5L = -0.013; 
SF-6Dv2 = -0.008). Nevertheless, the majority of data 
points fell within the 95% limits of agreement (Outside 
the limitation: EQ-5D-5L = 4.38%; SF-6Dv2 = 2.50%), 
indicating good overall consistency between predicted 
and observed values, which also showed the optimal SF-
6Dv2 model had better agreement stability. However, 
such comparisons need cautious interpretation, it is 
worth noting that the selection of one of the two map-
ping algorithms developed in this study typically depends 
on data availability and the overall study design. For 
instance, in economic evaluations, the choice of mapping 
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algorithm should ideally be as consistent as possible with 
the elicitation methods employed for other utility data.

This study demonstrated that the range of mapped 
utility values differed between the two measures (0.812–
0.984 for the EQ-5D-5L, and 0.584–0.919 for the SF-
6Dv2), and the utility values derived from the EQ-5D-5L 
were systematically higher than those from the SF-6Dv2. 
Consistent with previous research [75], the mapped EQ-
5D-5L utilities in diabetic patients exhibited smaller vari-
ations across health states compared to utilities measured 
directly, potentially affecting the results of economic 
evaluations. Additionally, due to limited samples in poor 
health conditions, both the EQ-5D-5L and the SF-6Dv2 
systematically overestimate mapped utility values for 
poor health states, which may reduce the observed QALY 
gains from health improvements, potentially leading to 
distorted cost-effectiveness outcomes [76]. Research-
ers may need to conduct sensitivity analyses to validate 
the robustness of results generated by these mapping 
algorithms.

This study has several limitations. First, while the 
development and validation datasets were entirely inde-
pendent during model exploration, both were derived 
from the same population sample, underscoring the 
lack of external validation. Second, to mitigate potential 
selection bias due to the overrepresentation of younger, 
technology-proficient patients, we implemented face-to-
face interviews. Specifically, trained interviewers assisted 
elderly or patients with low digital literacy in completing 
questionnaires through standardized clarification pro-
tocols. However, the partial reliance on online devices 
in data collection may still have inadvertently excluded 
populations with limited digital access, thereby skewing 
the sample toward younger, technologically adept indi-
viduals. Third, the study’s generalizability is limited by its 
relatively small sample size and cross-sectional design. 
Future research should prioritize longitudinal stud-
ies with larger and more diverse populations to further 
validate and refine the proposed mapping algorithms, 
thereby enhancing their applicability in real-world 
settings.

Conclusion
This study provides two mapping algorithms, derived 
from the TPM model combined with the responses of 
the ADDQoL, both of which exhibit acceptable goodness 
of fit and precision. These algorithms enable the predic-
tion of EQ-5D-5L and SF-6Dv2 utility values from the 
ADDQoL among T2DM patients in China. The utiliza-
tion of these mapping functions not only complements 
patient data in clinical practice and research but also 
offers an empirical application for informing economic 
evaluations related to the T2DM interventions.
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